ESTASISTIX ESTASISTIX

Econometría

Grado en ADE / Economía UCM

Apuntes Apuntes

1. INTRODUCCIÓN A LA ECONOMETRÍA

NATURALEZA Y OBJETIVOS DE LA ECONOMETRÍA

La **econometría** se encarga de la medida en Economía. Su objetivo es medir, desde un punto de vista empírico, las relaciones entre las variables económicas. Se basa en la **teoría Económica** y los **datos**.

Enfoque tradicional: la teoría económica postula un modelo y la econometría lo contrasta.

Enfoque moderno: aportar un modelo que explique las características de los datos.

Si encontramos una relación entre dos variables **no implica que sea causal**, significa que las dos variables varían conjuntamente. Para valorar la causalidad se debería hacer un experimento, modificando la VI y observando si se producen cambios en la VD, controlando todas las demás variables de confusión y manteniendo todo lo demás constante (ceteris paribus). Es decir, se deberían recoger datos experimentales, en lugar de **observacionales**, que es el tipo de datos que tenemos en Economía. *Ejemplo:*

TIPOLOGÍA DE DATOS

Los datos básicamente se pueden clasificar en tres tipos:

Corte transversal o sección cruzada (x_i): las observaciones corresponden a diferentes unidades económicas (individuos, empresas, países ...) por un único período de tiempo.

Series temporales o longitudinales (x_t): las observaciones corresponden a diferentes periodos de tiempo (años, meses, días ...) por un única unidad económica.

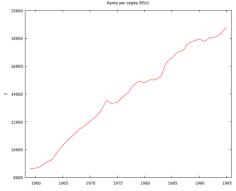
Datos de panel (x_{it}): las observaciones corresponden a diferentes unidades económicas y para cada una de las diferentes unidades tenemos información para varios períodos de tiempo.

METODOLOGÍA DE MODELIZACIÓN

Modelo económico: Consumo = f(Renta) **Model econométrico:** $Consumo_i = \beta_o + \beta_1 Renta_i + u_i$

- Especificación:
- Obtención de datos:
- Estimación:
- Verificación o diagnosis + revisión del modelo:
- Predicción:


VARIABLES


Variable endógena (y): es la variable explicada o que recibe efectos de las otras. **Variables exógenas (x):** explican a la endógena, sin estar influenciadas por ella.

2. MODELO DE REGRESIÓN SIMPLE Y ANÁLISIS GRÁFICO

REPASO DE ESTADÍSTICA DESCRIPTIVA

Tabla de frecuencias

Estadísticos descriptivos

Media aritmética: es el centro de gravedad de los datos. $\bar{x} = \frac{\sum x_i}{N}$

Mediana: es el número que una vez ordenados los valores de menor a mayor está en el centro.

Moda: es el valor que más se repite.

Varianza: es la media aritmética de los cuadrados de las diferencias de los valores de la variable con

respecto a su media aritmética
$$var_{(x)} = \sigma^2 = \frac{\sum (x_i - \overline{x})^2}{N} = \frac{\sum x_i^2}{N} - \overline{x}^2$$

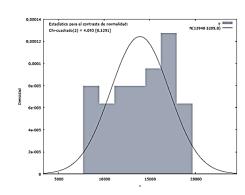
La desviación estándar/típica: es la raíz de la varianza. $dt = \sigma = \sqrt{\sigma^2}$

Coeficiente de variación de Pearson (CV): es el más empleado de los índices de dispersión relativa y se define como el cociente entre la desviación típica y la media aritmética. $CV = \frac{\sigma}{\bar{x}}$

Coeficiente de Asimetría: nos indica si la distribución es simétrica (=0), asimétrica positiva (>0) o negativa (>0). $g_3 = \frac{m_3}{S^3}$

Coeficientes de curtosis: nos indica si la distribución es mesocúrtica (=3), leptocúrtica (>3) o platicúrtica (>3). $g_4 = \frac{m_4}{S^4}$

La **covarianza:** nos indica si no hay relación (=0) si hay relación directa (>0) o inversa(<0).


$$cov_{(x,y)} = \frac{\sum (x_i - \bar{x}) \cdot (y_j - \bar{y})}{N} = \frac{\sum x_i y_j}{N} - \bar{x}\bar{y}$$

El **coeficiente de correlación** de Pearson: es la covarianza estandarizada entre +1 y -1 $cor_{xy} = \frac{cov_{(x,y)}}{dt_x \cdot dt_y}$

observaciones 1959 - 1995	
para la variable 'y' (37	
observaciones válidas)	
Media	13940,
Mediana	14099,
Mínimo	8604,3
Máximo	18803,
Desviación típica	3209,8
c.v.	0,23025
Asimetría	-0,17109
Exc. de curtosis	-1,1960

Estadísticos principales, usando las

Renta per cápita en EEUU (y)

REGRESIÓN LINEAL SIMPLE

Método MCO: $Min \sum \widehat{u_i}^2$

ESTODISTIX

$$\widehat{y_i} = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot x_i \qquad \begin{cases} \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \cdot \overline{x} \\ \widehat{\beta}_1 = \frac{\widehat{cov}_{(x,y)}}{\widehat{var}_{(x)}} = \widehat{cor}_{(x,y)} \cdot \frac{\widehat{dt}_y}{\widehat{dt}_x} = \frac{n \cdot \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} \end{cases}$$

Ejemplo Gretl / Eviews:

Modelo 1: MCO, usando las observaciones 1-35 Variable dependiente: Notas_final

	coeficiente	Desv.	tipica	Estadistico	t valo	r p
const	3.65183	0.668	219	5.465	4.67	e-06 ***
Asistencia	0.121389	0.038	0842	3.187	0.00	31 ***
Media de la v	ble. dep. 5	.514286	D.T.	de la vble.	dep. 2	.160766
Suma de cuad.	residuos 1	21.3759	D.T.	de la regres	ión l	.917826
R-cuadrado	0	.235393	R-cua	drado correg	ido 0	.212223
F(1, 33)	10	0.15944	Valor	p (de F)	0	.003136
Log-verosimil		1.42487	Crite	rio de Akaik		46.8497
Criterio de S	chwarz 1	49.9604	Crit.	de Hannan-O	uinn 1	47.9235

Dependent Variable: Notas_final Method: Least Squares Sample (adjusted): 1 35 Included observations: 35

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.65183	0.668219	5.465	0.0000
ASISTENCIA	0.121389	0.0380842	3.187	0.0000
R-squared	0.235393 Mean dependent var		lent var	5.514286
Adjusted R-squared	0.212223	S.D. depende	2.160766	
S.E. of regression	1.917826	F-statistic		10.15944
Sum squared resid	121.3759	Prob(F-statist	ic)	0.003136

Modelo poblacional (Función de regresión poblacional FRP) $y_i = \beta_0 + \beta_1 x_i + u_i$ **Modelo muestral** (Función de regresión muestral FRM) $y_i = \widehat{\beta_0} + \widehat{\beta_1} x_i + \widehat{u_i}$

Perturbación (residuos o errores): $\hat{u}_i = y_i - \hat{y}_i$

Estimación: se puede hacer con algún criterio de optimalidad (MCO) o a partir de los supuestos sobre los errores (Método de los momentos).

PROPIEDADES MATEMÁTICAS EN LA ESTIMACIÓN MCO

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \bar{x} \qquad \sum \hat{u}_i = 0 \qquad \sum x_i \cdot \hat{u}_i = 0 \qquad \sum \hat{y}_i \cdot \hat{u}_i = 0 \qquad \hat{y}_i = \bar{y}$$

BONDAD DEL AJUSTE

Siempre que el modelo tenga término independiente, se puede afirmar que: SCT = SCE + SCR

SCT: Variación total. $SCT = \sum (y_i - \bar{y})^2$

SCE: Variación explicada por el modelo. $SCE = \sum (\hat{y}_i - \bar{y})^2$

SCR: Variación no explicada por el modelo o de los residuos. $SCR = \sum (y_i - \hat{y}_i)^2 = \sum \hat{u}_i^2$

Teniendo en cuenta esto, la primera medida de bondad del ajuste será el **coeficiente de determinación** R² que nos dirá qué proporción de la variabilidad de la variable y está explicada por el modelo.

$$R^2 = \frac{SCE}{SCT} = 1 - \frac{SCR}{SCT} = \widehat{cor}_{(x,y)}^2(MRLS)$$

El valor de R² va de 0 a 1, donde 1 significa que el 100% de la variable y queda explicada por el modelo (el modelo es perfecto) y 0 significa que el modelo explica el 0% de y (el modelo no vale para nada).

INTERPRETACIÓN DE LOS COEFICIENTES ESTIMADOS

Interpretaciones de la pendiente en las diferentes formas funcionales:

- **1.** $\hat{y}_i = \widehat{\beta_0} + \widehat{\beta_1}x_i$ el coef. $\widehat{\beta_1}$ nos indica el cambio medio esperado en y por cada unidad de x.
- **2.** $\hat{y}_i = \widehat{\beta_0} + \widehat{\beta_1} \ln(x_i)$ el coef. $\widehat{\beta_1}$ nos indica que si x \(\gamma\) 1%, esperamos que y \(\gamma\) en $\frac{\widehat{\beta_1}}{100}$ unidades
- **3.** $\widehat{\ln(y_i)} = \widehat{\beta_0} + \widehat{\beta_1}x_i$ el coef. $\widehat{\beta_1}$ nos indica que si x \(\dagger 1u, esperamos que y \(\dagger en 100 \(\dagger\hat{\hat{\beta}}_1\%
- **4.** $\widehat{\ln(y_i)} = \widehat{\beta_0} + \widehat{\beta_1} \ln(x_i)$ el coef. $\widehat{\beta_1}$ nos indica que si x \(\dagger 1%, esperamos que y \(\dagger en $\widehat{\beta_1}$ % *Ejemplos:*

Este dosier está hecho para seguir la clase de prueba.

Si te apuntas al curso te enviaremos por correo el dosier entero con todos los temas que faltan, ejercicios y exámenes de años anteriores

Más información en:

www.estadistix.com

Y si tienes cualquier consulta, escríbenos un whatsapp al 644310902

