
ESTASISTIX ESTASISTIX

Estadística I

Grado en ADE/Eco/A+D/CiF/EiT UAB 1/2

Apuntes Apuntes

1. ANÁLISIS DE DATOS OBTENCIÓN DE LOS DATOS

Una **población** es el conjunto de todos los elementos que cumplen una o varias características. Un **parámetro** es una propiedad descriptiva de la población que generalmente es desconocida.

Una muestra es un subconjunto de los elementos de una población.

Un **estadístico** una propiedad descriptiva de la muestra.

La **inferencia estadística** se encarga de extraer conclusiones sobre una población a partir del estudio de una muestra mediante técnicas probabilísticas.

La **estadística descriptiva** se encarga de resumir y describir un conjunto de datos para su comprensión.

Tipos de muestreos representativos:

- Muestreo aleatorio simple: totalmente al azar.
- Muestreo sistemático: mediante el cálculo de una frecuencia de extracción k=N/n.
- **Muestreo aleatorio estratificado:** si conservamos la proporcionalidad de las partes que componen la población antes de hacer la extracción aleatoria.
- Muestreo por conglomerados y por etapas: si la población se divide en partes equivalentes (conglomerados) y elegimos algunas por azar para ahorrar costes. Si lo hacemos varias veces: por etapas.

TIPOS DE VARIABLES

Variable: característica observable que cambia entre los elementos de una población. Característica que puede ser medida y que puede adoptar más de un valor.

Variables cualitativas o categóricas: son aquellas que recogen una característica que no se puede expresar mediante una cantidad, aunque sí con una categoría.

- **Nominales:** tienen un conjunto de categorías sin ningún tipo de jerarquía.
- **Ordinales:** tienen un conjunto de categorías con una jerarquía u orden.

Variables cuantitativas o numéricas: son aquellas variables que recogen como información una cantidad numérica de lo que se está observando.

- **Discretas:** tienen un conjunto finito de valores por ejemplo si únicamente toman números enteros.
- Continuas: el conjunto de posibles valores entre dos números fijos es infinito.

TABLAS DE DISTRIBUCIÓN DE FRECUENCIAS

Frecuencia absoluta (n_i) : número de veces que se repite un determinado valor. Puede ser individual o acumulada (N_i) En les variables nominales no tiene sentido acumular.

Frecuencia relativa (f_i) : proporción que representa las apariciones de ese valor respecto al total $f_r = \frac{n_i}{n}$ También puede ser individual o acumulada (F_i) . Si se multiplica por 100 nos dará un porcentaje.

Para datos cuantitativos agrupados en intervalos:

Amplitud del intervalo: $a_i = L_i - L_{i-1}$

Marca de clase: $c_i = \frac{L_i + L_{i-1}}{2}$

Altura del intervalo: $h_i = \frac{n_i}{a_i}$

Ejemplo numérico discreto, número de hijos por familia: 2, 1, 1, 0, 1, 2, 2, 0, 1, 1.

 x_i

n

 N_i

 f_i

 F_i

0

1

2

Ejemplo: numérico continuo, notas de un examen: 3,4; 5,3; 6,8; 9,1; 7,2; 8,3; 1,9; 5,1; 4,4; 3,2.

 x_i

 n_i

 N_i

 f_i

 F_i

 a_i

 c_i

n

[0-2)

[2-4)

[4-6)

[6-8)

[8-10)

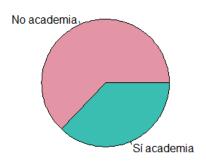
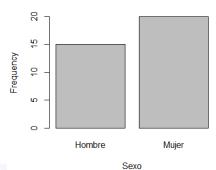
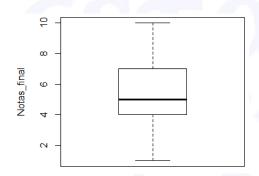
Ejemplo R Studio:

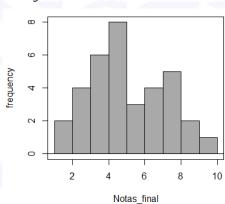
```
# Mostra la taula de freqüències
DiscFreqTable
                    val%
                          %cum val%cum
## 1
              24.5
                    28.6
                          24.5
                                  28.6
                          43.6
                                   50.9
                    22.4
## 3
                                   65.8
          24
                    14.9
                          56.4
## 4
          12
                          62.8
                                   73.3
## 5
                    26.7
                          85.6
          43
              22.9
## NA
          27
             14.4
                     NA 100.0
                                    NA
## Total 188 100.0 100.0 100.0 100.0
```

Coi	ntF	reqTab.	le					
##		Lower	Upper	Main	Frequency	Percentage	CF	CPF
##	1	0.0	0.1	0.05	0	0.0	0	0.0
##	2	0.1	0.2	0.15	0	0.0	0	0.0
##	3	0.2	0.3	0.25	0	0.0	0	0.0
##	4	0.3	0.4	0.35	5	2.7	5	2.7
##	5	0.4	0.5	0.45	24	12.8	29	15.4
##	6	0.5	0.6	0.55	27	14.4	56	29.8
##	7	0.6	0.7	0.65	27	14.4	83	44.1
##	8	0.7	0.8	0.75	5.6	29.8	139	73.9
##	9	0.8	0.9	0.85	34	18.1	173	92.0
##	10	0.9	1.0	0.95	15	8.0	188	100.0

GRÁFICOS

Diagrama de sectores


Diagrama de barras

Boxplot

Histograma

MEDIDAS DE POSICIÓN

Media aritmética:

$$\bar{x} = \frac{\sum x_i}{n} = \frac{\sum x_i \cdot n_i}{n} = \sum x_i \cdot f_i$$

Mediana:

$$Pos_{Md} = \frac{n+1}{2}$$

Cuartiles y percentiles:

MEDIDAS DE DISPERSIÓN

Varianza muestral (S2):

$$S^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n} = \frac{\sum x_{i}^{2}}{n} - \bar{x}^{2} \qquad = \frac{\sum (x_{i} - \bar{x})^{2} \cdot n_{i}}{n} = \frac{\sum x_{i}^{2} \cdot n_{i}}{n} - \bar{x}^{2}$$

Varianza corregida o casi-varianza (S^{2}_{n-1}):

$$S_{n-1}^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1} = \left(\frac{\sum x_{i}^{2}}{n} - \bar{x}^{2}\right) \cdot \frac{n}{n - 1} = \frac{\sum (x_{i} - \bar{x})^{2} \cdot n_{i}}{n - 1} = \left(\frac{\sum x_{i}^{2} \cdot n_{i}}{n} - \bar{x}^{2}\right) \cdot \frac{n}{n - 1}$$

La desviación estándar/típica (S):

$$S = DE = \sqrt{S^2}$$

Coeficiente de Variación de Pearson (CV):

$$CV = V = \frac{S}{\bar{x}}$$

Rango, Recorrido o Amplitud (R):

$$R = X_{max} - X_{min}$$

Rango interquartílico (Rq):

$$R_I = Q_3 - Q_1$$

MEDIDAS DE FORMA

Moda:

Asimetría:

CA>0 asimetría positiva

CA=0 simetría

K>0 leptocúrticaK=0 mesocúrticaK<0 platicúrtica

CA<0 asimetría negativa

Curtosis:

Ejemplo R Studio:

var sd IQR cv skew kurtosis ## 4.000 2.00 3.00 0.274 -0,854 0.021

COMBINACIONES LINEALES DE VARIABLES

$$Si \ x = a_1 \cdot x_1 + a_2 \cdot x_2 \qquad \begin{cases} \bar{x} = a_1 \cdot \overline{x_1} + a_2 \cdot \overline{x_2} \\ S^2 = a_1^2 \cdot S_1^2 + a_2^2 \cdot S_2^2 \end{cases}$$

TABLAS DE FRECUENCIAS DE DOBLE ENTRADA O BIVARIANTES

	Suj. 1	Suj. 2	Suj. 3	Suj. 4	Suj. 5	Suj. 6	Suj. 7	Suj.8	Suj. 9	Suj.10
х	1	2	0	3	1	3	2	0	1	2
У	0	1	1	1	2	0	2	1	1	1

Frecuencias absolutas conjuntas:

x\y	0	1	2	
0	0	2	0	2
1	1	1	1	3
2	0	2	1	3
3	1	1	0	2
	2	6	2	10

Frecuencias relativas conjuntas:

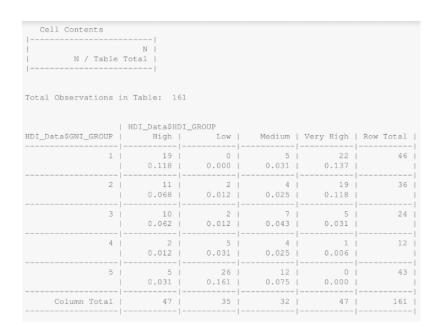
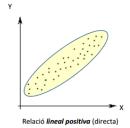

x\y	0	1	2	
0	0	0,2	0	0,2
1	0,1	0,1	0,1	0,3
2	0	0,2	0,1	0,3
3	0,1	0,1	0	0,2
	0,2	0,6	0,2	1

Tabla de frecuencias condicionales

$X_i/(Y=2)$	$n(X_i/(Y=2))$	$f(X_i/(Y=2))$	Y
0	0	0	
1	1	0,5	
2	1	0,5	
3	0	0	
	2	1	

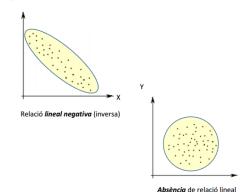
$Y_i/(X=0)$	$n(Y_i/(X=0))$	$f(Y_i/(X=0))$
0		
1		
2		

Ejemplo R Studio:


DESCRIPCIÓN CONJUNTA DE DOS VARIABLES CUANTITATIVAS

ESTOOISTIX

La relación lineal entre dos variables puede ser:


- Positiva (+ de una variable, + del otro o al revés), Ej : Horas de estudio (X) y nota en el examen (Y).

Horas de estudio	nota
3	2
8	4
12	7
16	9

- **Negativa** (+ de una, - del otro) Ej.: ausencias a clase (X) y nota en el examen (Y).

Ausencias	nota
4	9
5	7
9	4
12	2

- Nula. Sin relación. Ex: altura (X) y nota (Y).

También nos podemos encontrar con relaciones no lineales

Medidas de asociación lineal

Además del análisis gráfico, podemos calcular una serie de indicadores que nos ayudarán a decidir si las variables están relacionadas (de forma lineal positiva o negativa) y con **qué intensidad.**

La covarianza(S_{xy})

$$S_{xy} = \frac{\sum (x_i - \bar{x}) \cdot (y_j - \bar{y})}{n} = \frac{\sum x_i y_j}{n} - \bar{x}\bar{y} = \frac{\sum (x_i - \bar{x}) \cdot (y_j - \bar{y}) \cdot n_{ij}}{n} = \frac{\sum x_i y_j \cdot n_{ij}}{n} - \bar{x}\bar{y}$$

La covarianza corregida o casi-covarianza $(S_{xy} |_{n-1})$

$$S_{xy\ n-1} = \frac{\sum (x_i - \bar{x}) \cdot (y_j - \bar{y})}{n-1} = \left(\frac{\sum x_i y_j}{n} - \bar{x}\bar{y}\right) \cdot \frac{n}{n-1} = \frac{\sum (x_i - \bar{x}) \cdot (y_j - \bar{y}) \cdot n_{ij}}{n-1} = \left(\frac{\sum x_i y_j \cdot n_{ij}}{n} - \bar{x}\bar{y}\right) \cdot \frac{n}{n-1}$$

El coeficiente de correlación (rxy)

$$r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$$

$$r = 0.9$$

$$r = 0.5$$

$$r = 0.7$$

$$r = -0.7$$

El coeficiente de determinación (R2)

$$R^2 = r_{xy}^2$$

También se puede expressar las correlaciones o las covarianzas en matrices:

$$S = \begin{pmatrix} s_1^2 & s_{12} & \dots & s_{1p} \\ s_{21} & s_2^2 & \dots & s_{2p} \\ \dots & \dots & \dots & \dots \\ s_{p1} & s_{p2} & \dots & s_p^2 \end{pmatrix}$$

$$R = \begin{pmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \dots & \dots & 1 & \dots \\ r_{p1} & r_{p2} & \dots & 1 \end{pmatrix}$$

Ejemplo: calcula los indicadores de asociación lineal sabiendo que $\bar{x}=1.5$ $\bar{y}=1$ $S_x^2=1.05$ $S_y^2=0.4$

	Suj. 1	Suj. 2	Suj. 3	Suj. 4	Suj. 5	Suj. 6	Suj. 7	Suj.8	Suj. 9	Suj.10
Х	1	2	0	3	1	3	2	0	1	2
У	0	1	1	1	2	0	2	1	1	1
	x\y		0		1		2			
	0		0		2		0		2	
	1		1		1		1		3	
	2		0		2		1		3	
	3		1		1		0		2	
			2		6		2		10	

Ejemplo R Studio:

2. TEORÍA DE LA PROBABILIDAD

SUCESOS ALEATORIOS Y ESPACIO MUESTRAL

Experimento aleatorio:

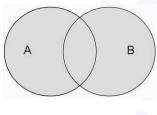
$$\Omega = \{O, X\}$$
 $\Omega = \{1,2,3,4,5,6\}$

Suceso:

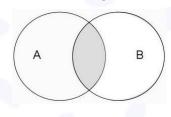
Operaciones con sucesos

Unión: *AUB={1,2,3,5}*

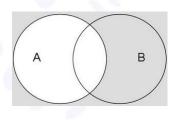
Intersección $A \cap B = \{1,3\}$ Complementario: $\bar{A} = \{2,4,6\}$


Diferencia $A-B=\{5\}$

 $\Omega = \{1,2,3,4,5,6\}$ $A = \{1,3,5\}$


B= {1,2,3}

 $C = \{4,6\}$


Representación gráfica (Diagramas de Venn):

 $A \cup B$

 $A \cap B$

Ā

AXIOMAS DE PROBABILIDAD

- 1.- La probabilidad nunca puede ser negativa.
- 2.- La probabilidad de que ocurra algún suceso del espacio muestral es uno.
- 3. Si tenemos dos sucesos disjuntos (que no se pueden dar a la vez) su unión es, la suma de las probabilidades individuales

INTERPRETACIONES DE LA PROBABILIDAD

Concepto clásico de la probabilidad:

Concepto experimental de la probabilidad:

Diagrama del árbol:

OPERACIONES CON PROBABILIDAD

$$P(\bar{A}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A - B) = P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

$$P(\bar{A}\cap\bar{B})=P(\overline{A\cup B})=1-P(A\cup B)$$

$$P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1 - P(A \cap B)$$

Ejemplo: si A i B son dos sucesos con P(A)=3/8, P(B)=4/8 i $P(A\cap B)=2/8$

a) $P(A \cup B)$

b) $P(\bar{A})$

c) $P(\bar{A} \cap \bar{B})$

d) $P(A \cap \overline{B})$

e) $P(A \cup \overline{B})$

PROBABILIDAD CONDICIONADA

$$P(^{A}/_{B}) = \frac{P(A \cap B)}{P(B)}$$

Independencia si: P(A/B) = P(A) o P(B/A) = P(B) o $P(A \cap B) = P(A) \cdot P(B)$

Ejemplo: En una clase el 40% tienen el pelo rubio, el 25% los ojos azules y el 15% las dos cosas.

- a) Si el pelo es rubio, ¿qué probabilidad hay de que también tenga los ojos azules?
- b) Si tiene los ojos azules, ¿qué probabilidad hay de que no tenga el pelo rubio?

Ejemplo: Con los siguientes datos, calcula:

	EC	EU	
Hombre	11	4	15
Mujer	11	9	20
	22	13	35

- a) P(M)
- b) P(EC)
- $c)\,P(H\cap EC)$
- d) P(EC/M)
- $e) P(EU \cup M)$

Ejemplo: Una enfermedad tiene dos síntomas diferentes, A y B. Un 20% de los casos no presentan síntomas, 50% el síntoma A y el 30% a más del A, el B. ¿Son independientes A y B?

TEOREMA DE LA PROBABILIDAD TOTAL

$$P(B) = P\left(\frac{B}{A_1}\right) \cdot P(A_1) + P\left(\frac{B}{A_2}\right) \cdot P(A_2) \dots + P\left(\frac{B}{A_n}\right) \cdot P(A_n)$$

Ejemplo: En un examen de Estadística I el 50% no van a ninguna academia, el 30% van a la academia Estadistix y el 20% a otras academias. La probabilidad de aprobar de los que no van a ninguna academia es de un 60%, de los que van a Estadistix es del 95% y de los que van a otras academias es del 70%. ¿Qué probabilidad tienen los alumnos de aprobar?

TEOREMA DE BAYES

$$P\left(^{A_{1}}/_{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{P\left(^{B}/_{A_{1}}\right) \cdot P(A_{1})}{P(B)} = \frac{P\left(^{B}/_{A_{1}}\right) \cdot P(A_{1})}{P\left(^{B}/_{A_{1}}\right) \cdot P(A_{1}) + P\left(^{B}/_{A_{2}}\right) \cdot P(A_{2}) \dots + P\left(^{B}/_{A_{n}}\right) \cdot P(A_{n})}$$

Ejemplo: en caso anterior, ¿cuál es la probabilidad de que si has aprobado, hayas ido a Estadistix?

Exámenes parciales

ESTADÍSTICA I

TIPUS A

Examen Parcial

1. Es disposa d'informació sobre la nota d'accés a la universitat (NOTA_ACCES) i la nota en el curs de Matemàtiques I (NOTA_MAT) de 500 estudiants de la facultat. Per cada estudiant es disposa, a més, del seu gènere (CODI_GENERE) i el grau en el que s'ha matriculat (CODI_GRAU) que prenen valors d'acord amb la següent taula de codis:

CODI_GENERE				
Valor	Gènere			
0	Home			
1	Dona			

CODI_GRAU				
Valor	Grau			
1	ADE			
2	ADE+Dret			
3	ECO			
4	CiF			
5	EiT			

La informació recollida es resumeix en les sortides GRETL que trobareu a l'altra cara d'aquest full. En base a aquests resultats es demana:

(a) En aquesta mostra, quin percentatge hi ha de dones?

[0.5 PUNTS]

(b) Considerant el 50% dels estudiants amb millor nota d'accés, hi ha algú amb una nota [1 PUNT] d'accés per sota de la mitjana ? Justificar la resposta.

- (c) Com s'interpreta el signe negatiu del coeficient d'asimetria de la nota de Matemàtiques [0.5 PUNTS] I ?
- (d) Com s'interpreta el signe negatiu del coeficient de correlació entre el gènere i el grau [1 PUNT]
- (e) Existeix una relació clara entre la nota d'accés a la universitat i la nota de Matemàtiques [1 PUNT] I ? Justificar la resposta.

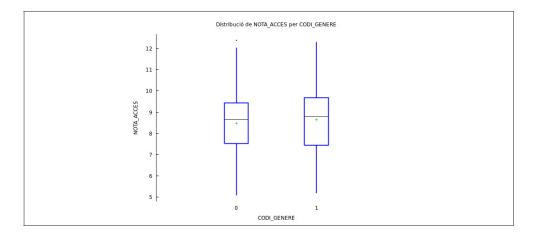
- (f) Quin ha estat el grau preferit entre els homes a l'hora de matricular-se ? I entre les [0.5 punts] dones ? Justificar la resposta.
- (g) On s'observa més variabilitat en la nota d'accés, entre els homes o entre les dones ? [0.5 PUNTS] Justificar la resposta.
- 2. La probabilitat que una empresa rebi un ajut a la innovació i a la internacionalització (AII) depèn, entre altres factors, del sector. Segons un estudi, si classifiquem les empreses en: baixa tecnologia manufacturera (BTM), alta tecnologia manufacturera (ATM) i serveis intensius de coneixement (SIC), les probabilitats d'obtenir un ajut són respectivament: 0.2, 0.25 i 0.35. En un país hi ha un 60% d'empreses de baixa tecnologia manufacturera, un 25% d'alta tecnologia manufacturera i un 15% del sector de serveis intensius de coneixement. Trobeu:
 - (a) La probabilitat que una empresa pertanyi a les BTM i rebi un ajut a la innovació i [1 PUNT] internacionalització (AII).

(b) Quina és la probabilitat que una empresa rebi un ajut AII?

[1.5 PUNTS]

Ξ

(c) Quina és la probabilitat que una empresa no rebi un ajut AII?


[0.5 PUNTS]

(d) Si una empresa ha rebut un ajut AII, a quin dels tres sectors és més probable que [2 PUNTS] pertanyi? Justifica la teva resposta a partir de les probabilitats calculades.

Estadístics principals, usant les observacions $1-500$								
Variable	Mitjana	Mediana	Desv. Estàndard	Asimetria				
CODI_GENERE	0.38200	0.0000	0.48636	0.48572				
NOTA_ACCES	8.5477	8.7330	1.4444	-0.031823				
NOTA_MAT	4.4622	5.0000	2.2302	-0.24974				
CODLGRAU	2.7860	3.0000	1.3682	0.093670				

Coeficients de correlació, usant les observacions 1 – 500										
CODI_GENERE	NOTA_ACCES	NOTA_MAT	CODI_GRAU							
1.0000	0.0574	0.0396	-0.1329	CODI_GENERE						
	1.0000	0.3639	-0.4641	NOTA_ACCES						
		1.0000	-0.1487	NOTA_MAT						
			1.0000	CODI_GRAU						

Tabulació creua	Tabulació creuada de CODLGENERE (files) contra CODLGRAU (columnes)							
	[1]	[2]	[3]	[4]	[5]	TOTAL		
[0]	22.30%	13.60%	31.10%	14.90%	18.10%	309		
[1]	31.40%	19.40%	16.80%	27.20%	5.20%	191		
TOTAL	25.80%	15.80%	25.60%	19.60%	13.20%	500		

ESTADÍSTICA I

TIPUS A

Examen Parcial

6 d'Abril de 2021

1. Es realitzen 2000 entrevistes a persones en situació d'atur al Vallès Occidental sobre els temps que porten desocupades (DAYS) i els ingressos mensuals que tenien abans de perdre la feina (INCOME). Per a cada una d'aquestes persones es disposa, a més, del seu gènere (GENDER_CODE) i de l'ocupació que tenien immediatament abans de quedar-se en atur (OCCUPATION_CODE) que prenen valors d'acord amb la següent taula de codis:

GENDE	R_CODE		
Valor	Gènere		
0	Home		
1	Dona		

	OCCUPATION_CODE						
Valor	Ocupació	Valor	Ocupació				
1	Enginyers i graduats	6	Subalterns				
2	Enginyers tècnics i pèrits	7	Auxiliars administratius				
3	Caps d'admistració i taller	8	Oficials de primera i de segona				
4	Ajudants no titulats	9	Oficials de tercera i especialistes				
5	Oficials administratius	10	Mà d'obra no qualificada				

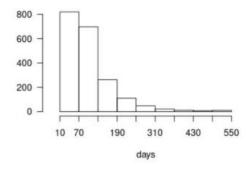
La informació recollida es resumeix en les sortides d'**RStudio** que trobareu a l'altra cara d'aquest full. En base a aquests resultats es demana:

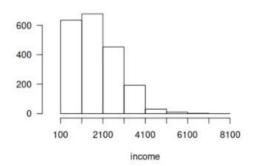
- (a) En aquesta mostra, quin percentatge dels entrevistats eren Auxiliars Administratius abans de [0,5 PUNTS] quedar-se en atur? Justficar la resposta.
- (b) Calcula l'ingrés mitjà de les persones entrevistades a partir de la taula IncomeTable. Expliciteu [1 PUNT] els câlculs.
- (c) Del total d'entrevistats que treballaven d'Oficials administratius, quin percentatge són dones? [1 PUNT]
- (d) Es pot interpretar el signe del coeficient de correlació entre el gènere i l'ocupació? Per què? [0,5 punts]
- (e) Existeix una relació clara entre les variables days i income? De quin tipus i per què? [1 punt]
- (f) Entre quins valors (interval) trobaríem la mediana mostral dels ingressos? Justificar la resposta. [0,5 punts]
- (g) Quina és la moda mostral (o modes mostrals, si fos el cas) de la variable DAYS? Interpreta [0,5 PUNTS] aquest resultat.

2	. Un servei de câtering a domicili està estudiant la fabilitat de les comandes que reben durant la setmana, de les quals un 40% són a l'hora de dinar i el 60% restant pel sopar. De les comandes que reben a l'hora de dinar només 1 de cada 64 és falsa, mentre que de les comandes per sopar hi ha 1 que és falsa de cada 55 .	
	(a) Quina és la probabilitat que una comanda sigui falsa?	[1,25 PUNTS
	(b) Si una comanda no és falsa, quina és la probabilitat que sigui per sopar?	[1,25 PUNTS
	(c) Si una comanda és falsa, quina és la probabilitat que sigui per dinar?	[1,25 PUNTS
	(d) Quina és la probabilitat que una comanda no sigui falsa o que no sigui per sopar?	[1,25 PUNTS]

- Per poder fer l'examen cal tenir un document vàlid d'identitat i tenir-lo a la vista en tot moment.
- · L'examen no es pot fer amb llapis.
- TOTES LES RESPOSTES HAN D'ESTAR DEGUDAMENT JUSTIFICADES.
- Només es pot utilitzar una calculadora. No es pot tenir a l'abast, cap mena d'apunts, llibres, ni qualsevol altre tipus de material amb continguts relacionats amb l'assignatura.
- Els telèfons mòbils i altres dispositius han d'estar desconnectats i guardats. En cap cas es podran fer servir com a rellotge, com a calculadora, o per qualsevol altre funció.

Nom: Grup:


Taules de frequències bivariants

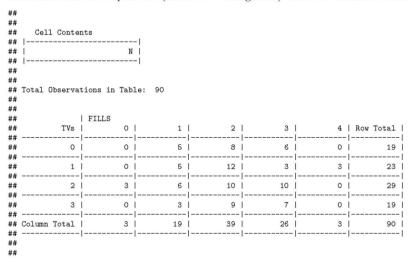

Freqüències conjuntes (absolutes i relatives) i freqüències absolutes marginals

##	602 0 0 0								
##	Cell Contents								
##	N N / Table Total								
nn									
##									
##	[]								
##									
nn nn	Total Observation	a da Tablas	2000						
##	TOTAL ODSERVACION	S IN TABLE.	2000						
nn									
nn	i	gender_code							
nn	occupation_code	0 1	1	Row Total					
nn									
##	1	182	108	290					
##		0.091	0.054	1					
##									
nn	2	521	286	807					
##	i	0.261	0.143	1					
##									
##	3	153	74	227					
mm	1	0.076	0.037						
##									
##	4	37	10	47					
nn		0.018	0.005						
un									
nn	5	30	12	42					
## ##		0.015	0.006						
##	6	6	2	1 8					
nn	0 1	0.003	0.001						
1111									
uu	7	8	7	1 15					
##		0.004	0.004	1					
mm.									
##	8	139	72	211					
nn		0.070	0.036	1					
##									
##	9	172	100	272					
##		0.086	0.050	1					
##		-							
mm	10	44	37	81					
nn		0.022	0.018						
##									
##	Column Total	1292	708	2000					
nn									

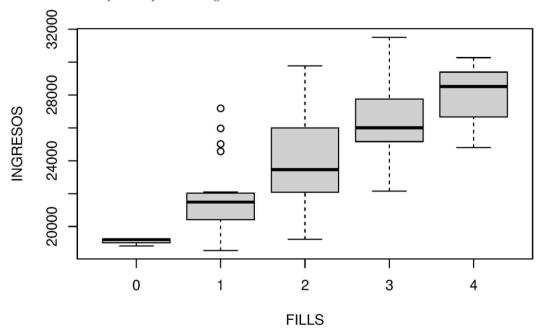
IncomeTable Lower Upper Main Frequency Percentage 31.8 635 33.9 1312 22.6 1764 9.7 1957 1100 2100 ## 1 ## 2 ## 3 100 600 635 3100 2600 2100 452 88.3 3100 4100 3600 ## 5 ## 6 ## 7 4100 5100 1.6 1988 0.5 1998 5100 4600 31 99.4 6100 5600 10 6100 7100 7100 6600 0.1 2000 0.0 2000 100.0 8100

Histogrames

Coeficients de correlació entre variables


```
## [1] "cor(occupation_code, gender_code)= 0.8161202834579708"
## [1] "cor(days,income)= -0.9350916158004891"
## [1] "cor(days,gender_code)= -0.3323032368920747"
## [1] "cor(occupation_code,income)= -0.70617361123571627"
```

ESTADÍSTICA I TIPUS A


Examen Parcial 24 de març de 2022

Pregunta 1

Es disposa d'una base de dades obtinguda mitjançant entrevistes a 90 famílies de Sabadell. La informació recollida correspon a les variables FILLS (número de fills de la família), TVs (número d'aparells de televisió a la casa) i INGRESOS (ingressos nets anuals de la família). Utilitzant aquesta informació es construeix la taula bidimensional de freqüències (taula de contingència) entre les variables FILLS i TVs que hi ha a continuació

Obtenim també aquesta representació gràfica de les observacions de la variable INGRESOS.

En base a aquests resultats,

a. Quin és el número mig de fills de les families a la mostra? Justificar la resposta.	[1 punt]
b. Quin percentatge de famílies tenen 2 fills? Justificar la resposta.	[0,5 punts]
c. Quin percentatge de famílies tenen 2 fills i 3 televisors? Justificar la resposta.	[0,5 punts]
d. De les famílies que tenen 2 fills, quin percentatge té 3 televisors? Justificar la resposta.	$[1~\mathrm{punt}]$
e. Compareu la distribució mostral del nombre de televisors condicionada al fet que família té 2 fills amb la distribució marginal del nombre de televisors. Són iguals? Perquè?	[1 punt]
f. Diries que són independents les variables FILLS i INGRESOS ? Perquè?	[1 punt]

Pregunta 2

La probabilitat que l'índex IBEX pugi un dia qualsevol és 0,52 i la probabilitat que pugi un dia que el president del govern apareix en televisió és 0,49. Si el president del govern apareix en televisió el 32,5% dels dies,

- a. quina és la probabilitat que en un mateix dia l'IBEX hagi pujat i el president del govern hagi aparegut [1 punt] en televisió?
- b. Si ens informen que un dia l'IBEX ha pujat, quina és la probabilitat que el president del govern hagi [2 punts] aparegut en televisió?
- c. Un dia que el president del govern NO apareix per televisió, quina és la probabilitat que l'IBEX pugi? [2 punts]

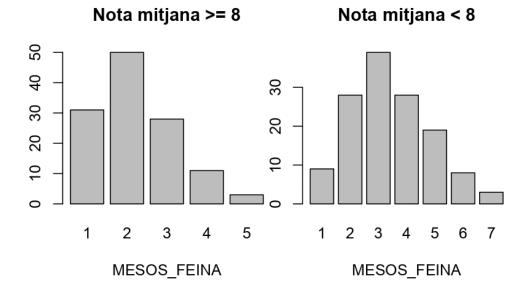
- Per poder fer l'examen cal tenir un document vàlid d'identitat i tenir-lo a la vista en tot moment.
- L'examen no es pot fer amb llapis.
- · Totes les respostes han d'estar degudament justificades.
- Només es pot utilitzar la calculadora. No es pot tenir a l'abast, cap mena d'apunts, llibres, ni qualsevol altre tipus de material amb continguts relacionats amb l'assignatura.
- Els telèfons mòbils, smartwatches, i qualsevol altre dispositiu han d'estar desconnectats i guardats. En cap cas es podran fer servir com a rellotge, com a calculadora, o per qualsevol altra funció.

ESTADÍSTICA I

TIPUS A

Examen Parcial

27 de març de 2023


Pregunta 1

Un estudi realitzat amb 257 estudiants que van acabar els seus estudis universitaris l'any passat va analitzar conjuntament les variables ANYS_ESTUDIS (anys que s'ha trigat en completar els estudis), MESOS_FEINA (mesos que s'ha trigat en trobar una feina) i NOTA_MITJANA (Nota mitjana de l'expedient).

Les dades recollides es resumeixen en la següent taula bidimensional de freqüències (taula de contingència) entre les variables ANYS_ESTUDIS i MESOS_FEINA

## ##	Total Observat	N tions in Tab	-i Le: 257						
##		MESOS_FEIN						. 7	D T-+-1
##	ANYS_ESTUDIS	l 1	2	3 	l 4	5		7 	ROW IOTAL
##	4		57	31	18	9	5	0	160
##	5	0	21	l 29	14	9	2	1	76
##	6	0	0	7	, 6		1	1	18
##	7	I 0	0	l 0	1	1	0	1	3
##	Column Total	I 40	78					3	257
## ## ##									

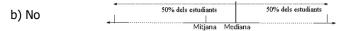
Obtenim també les següents representacions gràfiques que mostren la distribució de freqüències de la variable MESOS_FEINA pels estudiants que es van graduar amb una nota mitjana de l'expedient igual o per sobre de 8 i els que es van graduar amb una nota mitjana per sota de 8.

En base a aquests resultats,

- a. Quina és la mitjana del nombre d'anys que s'ha trigat en completar els estudis? Justificar la resposta.
- b. Quin percentatge d'estudiants a la mostra va trigar 5 o més mesos en trobar feina? Justificar la resposta.
- c. Quants estudiants a la mostra van trigar 5 mesos en trobar feina i 5 anys en acabar el seus estudis? Justificar la resposta.
- d. Dels estudiants a la mostra que van trigar 4 anys en acabar els seus estudis, quin percentatge va trobar feina en 3 o menys mesos? Justificar la resposta.
- e. Quina és la moda de la distribució de freqüències de la variable MESOS_FEINA. I la mediana ? Justificar [les respostes.
- f. Observant les representacions gràfiques de la distribució de freqüències de la variable MESOS_FEINA segons la nota mitjana de l'expedient, diries que existeix una relació entre aquestes variables? Per què?

Pregunta 2

Del total d'ordinadors que es compren a la Unió Europea un 70% són fabricats a un país asiàtic, mentre que el 30% restant es produeixen a la mateixa UE. Se sap que 8 de cada mil ordinadors fabricats a l'Àsia resulten defectuosos, mentre que només 4 de cada mil ordinadors produïts a Europa són defectuosos.


- a. Quina és la probabilitat que un ordinador qualsevol comprat a la Unió Europea resulti defectuós?
- b. Comprem un ordinador i resulta defectuós. Quina és la probabilitat de que hagi estat produït a la Unió Europea?
- c. La meitat dels ordinadors d'una determinada botiga són d'origen asiàtic, i l'altra meitat són europeus. Si comprem un ordinador triat a l'atzar d'aquesta botiga, quina és la probabilitat de que sigui defectuós?
- Per poder fer l'examen cal tenir un document vàlid d'identitat i tenir-lo a la vista en tot moment.
- · L'examen no es pot fer amb llapis.
- · Totes les respostes han d'estar degudament justificades.
- Només es pot utilitzar la calculadora. No es pot tenir a l'abast, cap mena d'apunts, llibres, ni qualsevol altre tipus de material amb continguts relacionats amb l'assignatura.
- Els telèfons mòbils, smartwatches, i qualsevol altre dispositiu han d'estar desconnectats i guardats. En cap cas es podran fer servir com a rellotge, com a calculadora, o per qualsevol altra funció.

SOLUCIONES EXÁMENES PARCIALES EXAMEN 2019

1.

a) 38,2%

- c) Asimetría por la izquierda, más dispersión por la cola izquierda que por la derecha
- d) No se puede interpretar ya que las dos variables son cualitativas nominales
- e) Relación positiva de poca intensidad r=0,364
- f) Los hombres Economía, las mujeres ADE
- g) Mirando el Boxplot, es un poco mayor la dispersión en las mujeres

2.

a)
$$p(AII \cap BTM) = p(AII/BTM) \cdot p(BTM) = 0.12$$

b)
$$p(AII) = p(AII/BTM) \cdot p(BTM) + p(AII/ATM) \cdot p(ATM) + p(AII/SIC) \cdot p(SIC) = 0.235$$

c)
$$p(\overline{AII}) = 1 - p(AII) = 0.765$$

$$p(BTM/AII) = \frac{p(AII/BTM) \cdot p(BTM)}{p(AII)} = 0,511 \quad \uparrow \uparrow \uparrow$$

$$p(ATM/AII) = \frac{p(AII/ATM) \cdot p(ATM)}{p(AII)} = 0,266$$

$$p(SIC/AII) = \frac{p(AII/SIC) \cdot p(SIC)}{p(AII)} = 0,223$$

EXAMEN 2021

1.

a) 0,75%

b)
$$\bar{x} = \frac{\sum x_i \cdot n_i}{n} = \frac{600 \cdot 635 + 1600 \cdot 677 + \cdots}{2000} = 1773$$

- c) 28,57%
- d) No se puede interpretar ya que las dos variables son cualitativas nominales
- e) Relación negativa de alta intensidad
- f) 1100-2100
- g) El intervalo modal es 10-70, no podemos decir cuál es la moda exacta con un histograma

2.

a)
$$p(F) = p(F/D) \cdot p(D) + p(F/S) \cdot p(S) = 0.017$$

b)
$$p(S/\overline{F}) = \frac{p(\overline{F}/S) \cdot p(S)}{p(\overline{F})} = \frac{(1 - p(F/S)) \cdot p(S)}{(1 - p(F))} = 0.6$$

c)
$$p(D/F) = \frac{p(F/D) \cdot p(D)}{p(F)} = 0.368$$

d)
$$p(\bar{F} \cup \bar{S}) = p(F \cap S) = 1 - p(F \cap S) = 1 - p(F/S) \cdot p(S) = 0.989$$

EXAMEN 2022

1.

a)
$$\bar{x} = \frac{\sum x_i \cdot n_i}{n} = \frac{0.3 + 1.19 + \cdots}{90} = 2,078$$

- b) 43,3%
- c) 10%
- d) 23,08%
- e) No son iguales ni las frecuencias absolutas (las condicionadas siempre serán menos, eso no nos dice nada) ni las frecuencias relativas (lo que significa que las dos variables están relacionadas).
- f) Relación directa o positiva entre número de hijos y renta

2.

a)
$$p(IS \cap PT) = p(IS/PT) \cdot p(PT) = 0,159$$

b)
$$p(PT/IS) = \frac{p(PT \cap IS)}{p(IS)} = 0.306$$

c)
$$p(IS/\overline{PT}) = \frac{p(\overline{PT}/IS) \cdot p(IS)}{p(\overline{PT})} = \frac{(1 - p(PT/IS)) \cdot p(IS)}{(1 - p(PT))} = 0,535$$

EXAMEN 2023

1.

a)
$$\bar{x} = \frac{\sum x_i \cdot n_i}{n} = \frac{4 \cdot 160 + 5 \cdot 76 + \cdots}{257} = 4,471$$

- b) 12,84%
- c) 9
- d) 80%
- e) Mo=2 Md=3
- f) Sí, los que tuvieron mejor nota encontraron trabajo antes

2.

a)
$$p(D) = p(D/A) \cdot p(A) + p(D/UE) \cdot p(UE) = 0.007$$

b)
$$p(UE/D) = \frac{p(D/UE) \cdot p(UE)}{p(D)} = 0.176$$

c)
$$p(D) = p(D/A) \cdot p(A) + p(D/UE) \cdot p(UE) = 0,006$$

Consulta todos nuestros cursos actualizados en:

www.estadistix.com

Y si tienes cualquier duda, escríbenos un whatsapp al 644310902

